

ANNUAL REPORT 2006

Meeting date: June 15, 2006

Hook formation near slab corners and prediction of argon gas bubble size

in the slab casting mold

Go-Gi Lee

(Visiting Scholar from POSTECH, South Korea)

Brian G. Thomas

Department of Mechanical & Industrial Engineering University of Illinois at Urbana-Champaign

Acknowledgements

- Continuous Casting Consortium at UIUC (Accumold, Algoma steel, Bosteel, Corus, Mittal Riverdale, LaBein, LWB Refractories, Nucor, Postech, Steel Dynamics)
- POSCO
- Korea Research Foundation
- Professor Brian G. Thomas
- Professor Seon-Hyo Kim
- Dr. Ho-Jung Shin, POSTECH

2

Near the corners of the slab: deepest hook depth at corners; complex 3-D hook shape
 → 3-D shape of frozen meniscus at corners is not clear

4

- Slab thickness: 230 mm; Slab width: 1300 mm; Casting speed: 1.45 m/min; Pour temperature: 1571°C

Mold oscillation conditions

Stroke	Frequency	Modification ratio	Negative	Positive
(mm)	(cpm)	for non-sinusoidal mode (%)	strip time (sec)	strip time (sec)
5.0	174	12	0.100	0.241

Steel composition of ultra-low carbon steel (wt. %)

С	Mn	Si	Р	S	Cr	Ni	Cu	Ti	Al
< 0.005	0.08	≤ 0.005	~ 0.015	~ 0.01	0.01	0.01	0.01 ~ 0.02	0.05	~ 0.04

Mold powder composition and properties

Chemical	Basicity	SiO ₂	CaO	MgO	Al ₂ O ₃	TiO ₂	Fe ₂ O ₃	MnO ₂	P ₂ O ₅	Na ₂ O	K ₂ O	F	B ₂ O ₃	Li ₂ O
composition (wt. %)	1.10	36.3	39.8	0.84	5.97	0.18	0.34	0.03	0.03	3.43	0.11	6.72	0	0.35
Properties	Solidif. Temperature (°C)			e So	Softening Temperature (°C)		Melting Temperature (°C)		e Vi	Viscosity at 1300 °C (Poise)				
		1149	19			1170		1180			3.21			

Similarity Analysis between Steel Caster & Water Model

Dimensionless groups

Er -	Inertial force due to liquid momentum	$-\rho_l$	U_l^2
I Iliq —	Buoyancy force	$\frac{1}{(\rho_l - \rho_s)}$) Dg
Fr	_Inertial force due to gas momentum _	$ ho_{_g}$	$d^2 V_g^2$
1 [°] gas	Buoyancy force	$\overline{(\rho_l - \rho_g)}$	D^3g
Ro	_Inertial force due to liquid momentum	$-\frac{\rho_l DU_l}{\rho_l DU_l}$	
Re_{liq} –	- Viscous force of liquid	$-\mu_l$	
Re	_ Inertial force due to gas momentum _	$\rho_g dV_g$	
RC gas	Viscous force of gas	$\mu_{_g}$	
We	_Inertial force due to liquid momentum	$-\rho_l D^2 U$	2
we _{liq} -	– Surface tension force	- γD	
We	_Inertial force due to gas momentum_	$\rho_g d^2 V_g^2$	
we _{gas}	Surface tension force	γD	

where,

D: average bubble diameter at a pore, *d*: gas injection pore diameter, ρ_1 : liquid density, ρ_o : gas density, μ_1 : liquid viscosity, μ_{g} : gas viscosity, U_{l} : liquid velocity, V_{g} : gas velocity, γ :liquid / gas surface tension coefficient, g:gravitational acceleration

Physical properties used in calculation

Parameters		Water-air	Steel-hot
r arameters		system	Ar system
Liquid density (ρ_1 , kg/m ³)		1000	7020
Gas density (ρ_g , kg/m ³)		1.331*	0.446^{*}
Liquid viscosity (μ_l , kg/m·s)		0.001	0.0056
Gas viscosity (μ_g , kg/m·s)		1.70E-05	7.42E-05
Surface tension coefficient $(y)/g$	N/m)	0.073	1 192

**) Note: Gas density was calculated for the temperature in liquid and the pressure due to the height of liquid in tundish (see appendix 2)

Ref.) H. Bai: Ph. D. Thesis. UIUC, Urbana, IL, 2000

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Go-Gi Lee

15

Liquid Flow Rate between Two Systems

From mass balance

$$Q_{W} = U_{W,nozzle} \cdot A_{W,nozzle}$$

$$U_{w,nozzle} \cdot A_{w,nozzle} \quad \therefore U_{w,nozzle}$$

 $= \frac{Q_W}{A_{W,nozzle}}$ We choose the same liquid velocity between two systems, because the refractory geometry scale is 1:1

$$U_{W,nozzle} = U_{S,nozzle}$$

$$\therefore Q_S = U_{S,nozzle} \cdot A_{S,nozzle}$$

$$\therefore V_C = \left(\frac{Q_S}{Cross - setional area of the strand}\right)$$

Here.

 $Q_{\rm W}$ is the water flow rate (m^3/s) , Q_s is the steel flow rate (m^3/s) , $U_{W,nozzle}$ is the water velocity in water model nozzle (m/s),

 $U_{s, nozzle}$ is the steel velocity in actual nozzle (m/s),

 $A_{W,nozzle}$ is the cross – sectional area of water model nozzle (m^2) ,

 $A_{s,nozzle}$ is the cross – sectional area of actual nozzle (m^2) ,

 V_c is the casting speed (m/min)

Table. Relationship between the liquid flow rate and casting speed

Water flow rate (<i>l</i> /min)	Qw	28.2	32.5	36.8
Liquid velocity in nozzle (m/sec)	Uw,nozzle(=Us,nozzle)	0.96	1.10	1.25
Steel thoughput (m ³ /min)	Qs	0.25	0.29	0.33
Casting speed (m/min, 230mm*1500mm slab)	Vc	0.74	0.85	0.96

Note) Bore diameter of SEN is 25mm in water model and 75mm in steel caster, respectively

Summary of Dimensionless Number Analysis

Dimensionless	Q _{air-in}	Q _{air-in}
number	Q _{Ar-cold}	Q _{Ar-cold}
number	(This work)	(Bai's calculation)
Fr _{liq}	0.07	0.285
Re _{liq}	0.087	0.356
We _{liq}	0.03	0.123
Fr _{gas}	0.0152	0.067
Regas	0.005	0.026
Wegas	0.01	0.044

\rightarrow Matching all of the dimensionless groups at the same time is impossible

• Active sites in downward flow are about 2 times those in stagnant flow

• Gas flow rate per site of high permeability is slightly higher than that of low permeability in downward-flowing flow at the same total gas flow rate

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

• The mean bubble size increases with increasing gas flow rate and decreasing liquid velocity

Conclusions

 Investigation of Ar bubble size in water model nozzle using porous refractory

 Micro texture of the porous refractory greatly affects injected gas behavior in stagnant flow

- Active sites in downward-flowing flow are about two times compare with stagnant measurement

- Although matching different dimensionless groups at the same time is impossible, the similarity of mean gas flow rate per site between water model and steel caster is good

- Bubble size variations increase with increasing gas flow rate and increasing bubble diameter

- Mean bubble size increases with increasing gas flow rate and decreasing liquid velocity

- The match of mean bubble size between the previous model prediction by Bai and the experimental data is reasonably good

Appendix 2. Calculation of Gas Density

 ho_{g} is density of gas

$$\rho_{g} = \frac{weight(m)}{volume(V)}$$
(1)'
Ideal gas equation is $PV = nRT$ (2)'
Combining Eqs.(1)'&(2)' gives

$$\rho_{g} = \frac{mP}{nRT}$$

1) Steel-Ar system

$$\therefore \frac{(\rho_{Ar})_{1833K}}{(\rho_{Ar})_{std}} = \left(\frac{P}{P_{std}}\right) \left(\frac{T_{std}}{T_{1833K}}\right) = \left(\frac{P_{std} + \rho_{s} \cdot g \cdot H_{s}}{P_{std}}\right) \left(\frac{273}{1833}\right)$$
$$= 1.679 * \left(\frac{1}{6.714}\right) \approx \frac{1}{4} = 0.25$$
$$\therefore (\rho_{Ar})_{1833K} = 0.25 * (\rho_{Ar})_{std} = 0.446 \, kg/m^{3}$$

 \therefore Ar volume expansion coefficient relative to STP = 4

2) Water-air system

$$\frac{(\rho_{Air})_{273K}}{(\rho_{Air})_{std}} = \left(\frac{P}{P_{std}}\right) \left(\frac{T_{std}}{T_{273K}}\right) = \left(\frac{P_{std} + \rho_W \cdot g \cdot H_W}{P_{std}}\right) \left(\frac{273}{273}\right)$$
$$= 1.032$$
$$\therefore (\rho_{Air})_{273K} = 1.032 * (\rho_{Air})_{std} = 1.331 kg/m^3$$

•

University of Illinois at Urbana-Champaign

Metals Processing Simulation Lab

Table. Properties used in calculation

Standard pressure	\mathbf{P}_{std}	101325	Ра
The Density of the liquid (kg/m^3)			
Density of water	ρ_{W}	1000	kg/m ³
Density of steel	ρs	7020	kg/m ³
The Density of the gas (kg/m ³ , STP)			
Density of Ar gas	ρ_{Ar}	1.783	kg/m ³
Density of air gas	ρ_{Air}	1.29	kg/m ³
The height of steel in tundish	Hs	1.0	m
The height of water in tundish	$H_{\rm w}$	0.33	m

$$\therefore (\rho_{Ar-hot}) = 0.446 \, kg/m^3$$
$$\therefore (\rho_{air-out}) = 1.331 \, kg/m^3$$

•

29